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Abstract

In this paper, we use finite element methods to simulate the hydrodynamical systems governing the motions of nematic
liquid crystals in a bounded domain X. We reformulate the original model in the weak form which is consistent with the
continuous dissipative energy law for the flow and director fields in W1;2þrðXÞ (r > 0 is an arbitrarily small number). This
enables us to use convenient conformal C0 finite elements in solving the problem. Moreover, a discrete energy law is
derived for a modified midpoint time discretization scheme. A fixed iterative method is used to solve the resulted nonlinear
system so that a matrix free time evolution may be achieved and velocity and director variables may be solved separately. A
number of hydrodynamical liquid crystal examples are computed to demonstrate the effects of the parameters and the per-
formance of the method.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The hydrodynamical and rheological properties of liquid crystals materials are determined by the compe-
tition between the kinetic enery and the internal elastic energies. The latter is represented in terms of the ori-
entational order parameter d, represents the alignment of the polar molecules of the materials. In the
meantime, the special coupling between the kinematic transport of the molecules and the induced elastic
stresses that affect the flow field give many interesting and complicated hydrodynamical phenomena that is
specially dependent on the materials.
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For the macroscopic continuum description of the hydrodyanamics of the nematic liquid crystals, Ericksen
and Leslie derived the following nonlinear coupled system [5,7,16] for those materials with isotropic elastic
energies:
ut þ ðu � rÞu� mr � DðuÞ þ rp � kr � ððrdÞTrdÞ � kr � ðbðDd� fðdÞÞdT þ ðbþ 1ÞdðDd� fðdÞÞTÞ ¼ 0;

ð1:1Þ
r � u ¼ 0; ð1:2Þ
dt þ ðu � rÞdþ bðruÞdþ ðbþ 1ÞðruÞTd� cðDd� fðdÞÞ ¼ 0 ð1:3Þ
with initial and boundary conditions
ujt¼0 ¼ u0; djt¼0 ¼ d0; ujoX ¼ u0joX ¼ gu; djoX ¼ d0joX ¼ gd: ð1:4Þ

Here u represents the velocity of the liquid crystal flow, p the pressure, and d the orientation of the liquid crys-
tal molecules, u; d : X� Rþ ! Rn, p : X� Rþ ! R and X � Rn. b 2 ½�1; 0� is a constant and l, k and c are
positive constants. In this paper we will only consider n = 2, i.e. two dimensional cases. But the method applies
to three dimensional cases. We define the strain rate DðuÞ ¼ ð1=2Þðruþ ðruÞTÞ, the gradients of the director
field take the standard notation as:
ðrdÞij ¼ di;j ¼
odi

oxj
and fðdÞ ¼ ð1=�2Þðjdj2 � 1Þd may be seen as a penalty function to approximate the constraint jdj ¼ 1 which is
due to liquid crystal molecules being of similar size. This penalty term is also physically meaningful and rep-
resents a possible relaxation of molecules from the strict unit-length constraint. The function fðdÞ is the gra-
dient of the scalar valued function F ðdÞ ¼ ð1=4�2Þðjdj2 � 1Þ2. The divergence operator of a matrix is defined as
ðr � AÞi ¼ aij;j ¼
X

j

oaij

oxj
:

For convenience of writing later we define
DbðuÞ ¼ bruþ ðbþ 1ÞðruÞT ð1:5Þ

The first equation in the system is the equation for the conservation of linear momentum (the force balance
equation). It combines a usual equation describing the flow of an isotropic fluid and an extra nonlinear cou-
pling term which is anisotropic. This extra term is the induced elastic stress from the elastic energy through the
transport in the third equation. The second equation represents incompressibility of the liquid. The third equa-
tion is associated with conservation of the angular momentum. We want to point out the transport of the
director, dt þ ðu � rÞdþ DbðuÞd, reflects the microscopic picture of those ellipsoid shaped molecules moving
in Stokes fluids with no slip boundary conditions on the particle surfaces [11,12]. It presents an effective
stretching effect on the director d. For this, we are going to give some brief explanations:

Due to the fact that d being a vector, we have to take into account of its tendency of response to the stretch-
ing in the flow field. For this, we will look at the deformation tensor F associated with the flow field,
F ij ¼
oxi

oX j
:

The simple chain rule gives the following transport property of F [24,17]
F t þ ðu � rÞF ¼ ðruÞF ; F �T
t þ ðu � rÞF �T ¼ �ðruÞTF �T:
Suppose the liquid crystal molecule is of rod-like shape, with infinite aspect ratio, the transport of the direc-
tion of the rod d can be expressed as
dðxðX ; tÞ; tÞ ¼ F d0ðX Þ;

which clearly demonstrates the stretching of the director besides the transport along the trajectory. Moreover,
taking the derivative with respect to t gives
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dt þ ðu � rÞd ¼ F td0 þ ðu � rÞF d0 ¼ ðruÞF d0 ¼ ðruÞd:

Hence the total derivative of the director here is
D
Dt

d ¼ dt þ ðu � rÞd� ðruÞd:
In general, for a molecule of ellipsoid shape with a finite aspect ratio, the transport of the main axis direc-
tion can be represented by
dðxðX ; tÞ; tÞ ¼ Ed0ðX Þ;

where E is the infinitesimal generators of F and F �T that were in the linear combination and satisfies the fol-
lowing transport equation:
Et þ ðu � rÞE ¼ �ðbruþ ð1þ bÞðruÞTÞE:

From this point of view we say that DbðuÞ has an effective stretching effect from the shape of molecules. This
will give the transport like:
D
Dt

d ¼ dt þ ðu � rÞdþ bðruÞdþ ð1þ bÞðruÞTd ¼ dt þ ðu � rÞd� xðuÞdþ ð2bþ 1ÞDðuÞd:
Again here we use the notation xðuÞ being the skew-symmetric part of ru and DðuÞ the symmetric part [5,7].
It is obvious to see that, when b = �0.5, the molecules take the spherical shape and the transport by the

flow field reduces to the transport of the flow and the rigid rotation.
It is a remarkable property that the system (1.1)–(1.3) possesses exactly the same energy dissipative law,

independent to the kinematic transport dt þ ðu � rÞdþ DbðuÞd:
dE
dt
¼ �ðmkDðuÞk2

L2ðXÞ þ kckDd� fðdÞk2
L2ðXÞÞ; ð1:6Þ
where
E ¼ 1

2
kuk2

L2ðXÞ þ
k
2
krdk2

L2ðXÞ þ k
Z

X
F ðdÞ:
The analytical results in [15,16] indicated that these energy laws are particularly important when the singu-
larities are involved in our study of hydrodynamical motions of these liquid crystal materials. The physical
singularities we are seeking/tracking are those energetically admissible ones. Hence the naive numerical
schemes which may not preserve the energy equalities can result in the loss of the accuracy of the numerical
scheme and the presence of artificial singularities.

There have been several previous attempts in this direction, especially in the case of small molecules situ-
ations, where the effect of the molecular stretching/rotation (or the term DbðuÞ) is ignored. Notice in deriving
this energy law (1.6) the test function �ðDd� fðdÞÞ is used (implying that the test function space should be in
H2) a C1 (or H2 conforming) finite element method is adopted in [21] to solve the system (1.1)–(1.3) in order to
keep the energy law after the spatial discretization. But the construction and implementation of C1 elements
are complicated. In [23] a mixed finite element method is applied to the system to avoid the C1 element. But the
introduction of the new variable rd increases quite a few number of unknown variables and complication of
implementation. A spectral method is also studied in [3]. Recently in [20] a direct weak formulation is intro-
duced and a C0 finite element method may be used with this formulation. The following reformulated energy
law associated with this formulation is only formally derived there.
d

dt
1

2
kuk2

L2 þ
k
2
krdk2

L2 þ k
Z

X
F ðdÞ

� �
¼ � mkruk2

L2 þ
k
c
kdt þ ðu � rÞdk2

L2

� �
: ð1:7Þ
We can see if the solution is so regular that the director equation holds then these two energy laws are the
same. The latter energy law allows lower regularity of the solution. But it is not derived rigorously based
on the weak form where the C0 finite element method is used, although the discrete energy decay is verified
through a number of numerical experiments in [20]. In fact, based on this direct weak formulation the energy
law (1.7) is not valid in general in a C0 finite element space.
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One different issue of the system (1.1)–(1.3) from the small molecule system (when DbðuÞd term is absent
from the transport equation) is that, the maximal principle holds in the latter case and not the former one.
This brings extra difficulties in the analytical study of the system. However, in all the numerical examples
we computed in this paper it seems that the director does not get stretched beyond the unit length. We also
notice the recent work in [25], which demonstrate the dramatic effects of the transport to the overall dynamics
of the flow, in that case, the annihilation speed of the point defects in the axial-symmetric geometries.

In the small molecule model Dd does not explicitly appear in the flow equation so we can directly obtain
a weak form which requires only W1;2þr regularity in 2D (or W 1;3 in 3D) for u and d, where r can be an
arbitrarily small positive number. Thus the C0 (conforming) finite element method may be used directly
(although not enough for a rigorous energy law). In the current transport case Dd appears explicitly. Its
direct weak form requires H2 regularity and usually C1 finite elements are required in order to maintain
the energy law. In this paper we will first reformulate the flow equation using the director field equation
to express Dd and obtaining a flow equation without Dd. Then we write down its weak form where only
W 1;2þr regularity is required for d and u. We can then apply the Galerkin finite element method with C0

finite elements to the reformulated system. The benefits of using C0 elements over C1 elements are obvious.
The method can be implemented easily and many existing codes and mesh generators may be incorporated
to reduce computational complication. Unlike [20] the energy law can be justified rigorously with this weak
form and with the corresponding C0 finite element method. The reformulation and energy law will be given
in Section 2. Furthermore, in Section 3 we present a temporal second order C0 finite element scheme. It is
a modified midpoint scheme and a discrete energy law is derived for this scheme. To our knowledge, such a
fully discrete energy law has never been done before in fluid flow computations. We also remark that a
method preserving the energy law of the model should be more reliable than a method without it, especially
in this liquid crystal flow case since the energy law is the key to produce correct dynamics. In Section 4 we
present an efficient way to solve the resulted nonlinear system by a fixed point iteration which formulates a
matrix free time evolution. Moreover, with this iterative method the flow field and director field are auto-
matically separated. We can thus solve the discrete system more efficiently since a direct linear system solver
for the flow equations or the director equation is only needed at the initial time but is not needed at later
time steps. We will use the method to simulate a few liquid crystal flow examples with various parameters
and domain geometries and will recognize difference to small molecule cases in Section 5. We will also show
a case (Fig. 5) where the energy law preserving scheme performs better than the method given in [20]. We
hope that these computational results would motivate further theoretical study of the model. Other compu-
tational results for microstructure of 2D and 3D liquid crystal materials (without the flow field) may be
found in [9,1,8,22] and references therein.

2. Weak formulation and continuous energy law

Let X be a bounded domain of R2. We denote by C the boundary of X, and we suppose that C is sufficiently
smooth (for example, Lipschitz-continuous). Define the spaces W1;2þrðXÞ ¼ ðW 1;2þrðXÞÞ2, W1;2þr

g ¼
fu 2W1;2þrðXÞ; u ¼ g on Cg, L2ðXÞ ¼ ðL2ðXÞÞ2 and L2

0ðXÞ ¼ fp 2 L2ðXÞ;
R

X p dx ¼ 0g, where r > 0 can be
arbitrarily small.

From the director Eq. (1.3) we can express
Dd ¼ 1

c
dt þ ðu � rÞdþ ðDbuÞdþ cfðdÞ
� �

:

We then have (cf. [23,20])
r � ðrdÞTrd
� �

¼ ðrdÞTDdþrðjrdj2Þ=2

¼ 1

c
ðrdÞT dt þ ðu � rÞdþ DbðuÞd

� �
þr jrdj2=2þ F ðdÞ

� �
;

r � ðDd� fðdÞÞdT
� �

¼ 1

c
r � ðdt þ ðu � rÞdþ DbðuÞdÞdT
� �

ð2:1Þ
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and
r � dðDd� fðdÞÞT
� �

¼ 1

c
r � dðdt þ ðu � rÞdþ DbðuÞdÞT
� �

;

where DbðuÞ is defined in (1.5). Substituting above relations to the flow Eq. (1.1) and defining a new pressure
p :¼ p þ jrdj2=2 result in an equation without Dd. By multiplying v and e to the first and the third equations,
respectively, We can obtain the following weak form:

Find u 2W1;2þr
gu
ðXÞ, p 2 L2

0ðXÞ and d 2W1;2þr
gd
ðXÞ such that
Z

X
ut � vþ ðu � rÞu � vþ mru : rv� pðr � vÞ þ k

c
dt þ ðu � rÞdþ DbðuÞd
� �

� ðv � rÞd
�

þ k
c

dt þ ðu � rÞdþ DbðuÞd
� �

� DbðvÞd
�

dx ¼ 0; 8v 2W1;2þr
0 ðXÞ; ð2:2Þ

Z
X
ðr � uÞqdx ¼ 0; 8q 2 L2ðXÞ; ð2:3Þ

Z
X

dt � eþ ðu � rÞd � eþ DbðuÞd � eþ cðrd : reþ fðdÞ � eÞ
� �

dx ¼ 0; 8e 2W1;2þr
0 ; ð2:4Þ
where ‘‘:’’ represents an inner product of two matrices, i.e. A : B ¼
P

i

P
jaijbij (also denoting jAj2 ¼ A : A) and

we have used the facts that
ðrdÞTw � v ¼ w � ðv � rÞd and wdT : rv ¼ w � ðrvÞd ¼ d � ðrvÞTw: ð2:5Þ

More precisely, the pressure p should be in space L

2þr
1þr
0 . For simplicity of writing, we just use a little bit smaller

space L2
0. It does not matter when we apply the finite element approximate space later.

With this weak form the energy law can be readily obtained when u and d satisfy homogeneous boundary
conditions. Taking v ¼ u and e ¼ ðk=cÞdt in (2.2) and (2.4), respectively, summing them up and using integral
identities (where (2.3) is used)
Z

X
ðu � rÞu � udx ¼ 1

2

Z
X

u � rjuj2 ¼ 0; ð2:6Þ
we have the following energy law:
d

dt
1

2
kuk2

L2 þ
k
2
krdk2

L2 þ k
Z

X
F ðdÞ

� �
¼ � mkruk2

L2 þ
k
c
kdt þ ðu � rÞdþ DbðuÞdk2

L2

� �
: ð2:7Þ
This indicates that the energy decays with time. A discrete energy law can be similarly obtained with a mod-
ified convection in (2.2) (see the following section) and is the same as (2.7) if C0 finite elements are used and
if the time remains continuous as long as such finite element solution belongs to the functional spaces re-
quired in (2.2)–(2.4). We will give a discrete energy law for a fully discretized system in the following
section.

3. A modified midpoint scheme with C0 finite elements and discrete energy law

Solutions of the weak problem (2.2)–(2.4) are approximated using a finite difference scheme in time and a
finite element method in space. Due to solution singularities associated to this type of problems maintaining
its energy law may be important to do a good simulation job. Such a law is also important to serve as a
justification in simulation of complex systems involving complex fluids equations since almost no bench-
mark solution is available. In existing numerical methods (cf. [23] and references therein) the discrete energy
law can only be derived for the semi-discrete case where the time remains continuous. Such a derivation is
usually a trivial application of the argument for the continuous energy law as long as the finite element
space is conformal to the space where the solution locates. In [20] even such a semi-discrete energy law can-
not be made rigorous. Since in the weak form derived earlier we only require the solution in space W1;2þr

(r > 0) we can then use conformal C0 finite element for the spatial discretization without any problem. In
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the temporal direction, since the liquid crystal flow model is highly nonlinear, explicit–implicit (or semi-
implicit) first order schemes are usually adopted (cf. [20]), where one part of the nonlinear term is treated
explicitly and the other part is treated implicitly. The fully implicit backward Euler scheme is also used fre-
quently in computational fluid dynamics. Later in this section we will remark about a possible approximate
discrete energy law for these two first order schemes. Nevertheless, our major goal in this section is to pres-
ent a second order temporal scheme which turns out to have an accurate discrete energy law. The nonlinear
system resulted from the discretization should be solved by a fast and efficient method, which will be dis-
cussed in the following section.

Let
W ¼W1;2þr
gu
ðXÞ � L2

0ðXÞ �W1;2þr
gd
ðXÞ
and Wh ¼ Uh � Ph �Hh �W be a finite dimensional subspace of W given by a finite element discretization
of X. Wh

0 represents the space Wh satisfying homogeneous Dirichlet boundary conditions. If Dt > 0 represents
a time step size and ðun

h; p
n
h; d

n
hÞ 2Wh is an approximation of uðtnÞ ¼ uðnDtÞ, pðtnÞ ¼ pðnDtÞ and dðtnÞ ¼ dðnDtÞ,

the approximation at time tnþ1 ¼ ðnþ 1ÞDt is computed as the solution of ðunþ1
h ; pnþ1

h ; dnþ1
h Þ 2Wh by the fol-

lowing scheme
Z
X

unþ1
�t � vþ ðunþ1

2
h � rÞunþ1

2
h � vþ 1

2
ðr � unþ1

2
h Þu

nþ1
2

h � vþ mru
nþ1

2
h : rv� p

nþ1
2

h ðr � vÞ
�

þ k
c

dnþ1
�t þ ðunþ1

2
h � rÞdnþ1

2
h þ Dbðu

nþ1
2

h Þd
nþ1

2
h

� �
� ðv � rÞdnþ1

2
h

þ k
c

dnþ1
�t þ ðunþ1

2
h � rÞdnþ1

2
h þ Dbðu

nþ1
2

h Þd
nþ1

2
h

� �
� DbðvÞd

nþ1
2

h

�
dx ¼ 0; ð3:1Þ

Z
X
ðr � unþ1

2
h Þqdx ¼ 0; ð3:2Þ

Z
X

dnþ1
�t � eþ ðunþ1

2
h � rÞdnþ1

2
h � eþ Dbðunþ1

2Þdnþ1
2

h � eþ crd
nþ1

2
h : reþ c

�2
ghðdn

h; d
nþ1
h Þ � e

� �
dx ¼ 0; ð3:3Þ
for all ðv; q; eÞ 2Wh
0, where unþ1

�t ¼ unþ1
h �un

h
Dt , dnþ1

�t ¼ dnþ1
h �dn

h
Dt , u

nþ1
2

h ¼ 1
2
ðun

h þ unþ1
h Þ, d

nþ1
2

h ¼ 1
2
ðdn

h þ dnþ1
h Þ, p

nþ1
2

h ¼
1
2
ðpn

h þ pnþ1
h Þ, and
ghðdn
h; d

nþ1
h Þ ¼

ðjdnþ1
h j

2 � 1Þ þ ðjdn
hj

2 � 1Þ
2

dnþ1
h þ dn

h

2
ð3:4Þ
is an approximation to the nonlinear function gðdÞ ¼ ðjdj2 � 1Þd in the director equation. It comes from a
relaxation force due to the unit length constraint of liquid crystal molecules. Note that the extra term
1
2
ðr � unþ1

2
h Þu

nþ1
2

h added in (3.1) corresponds to adding a zero term 1
2
ðr � uÞu to (1.1) following the technique men-

tioned in [26] in studying the pseudo-compressibility method. The reason we add this term here is a technical
need in deriving a discrete energy law for this scheme and for the penalized scheme later. In existing work on
liquid crystal flows continuous energy law is usually considered. The situation may be different in the discrete
case. Unlike the integral identity (2.6) the divergence free Eq. (3.2) does not eliminate the convection term

ðunþ1
2

h � rÞunþ1
2

h � v (since junþ1
2

h j
2 may not necessarily be in the finite element space of q) when taking v ¼ u

nþ1
2

h later
in deriving a discrete energy law.

If there were no unit length relaxation term gh the scheme given above would be just the midpoint scheme.
The approximation gh looks similar to the midpoint scheme but not exactly the same. We may call it a mod-
ified midpoint scheme. The approximate unit length relaxation term gh is so designed that we are able to derive
an accurate discrete energy law for the fully discrete system. The resulting system of the scheme may be solved
by a Newton or fixed point iterative method. We will discuss it in the following section.

Now we derive the discrete energy law assuming the homogeneous boundary condition for u and the time-
independent boundary condition for d. For a nonhomogeneous boundary condition one can usually change it
to the homogeneous boundary condition through a variable transformation. According to the continuous
case, we take v ¼ u

nþ1
2

h and e ¼ k
c dnþ1

�t . We can readily have
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Z
X
ðunþ1

2
h � rÞunþ1

2
h � unþ1

2
h þ 1

2
ðr � unþ1

2
h Þu

nþ1
2

h � unþ1
2

h

� 	
¼ 0 ð3:5Þ
since u
nþ1

2
h is zero at the boundary,
unþ1
�t � unþ1

2
h ¼ 1

2

unþ1
h � unþ1

h � un
h � un

h

Dt
¼ 1

2
ðjunþ1

h j
2Þ�t ð3:6Þ
and
rd
nþ1

2
h : rdnþ1

�t ¼ rd
nþ1

2
1 � rðd1Þnþ1

�t þrd
nþ1

2
2 � rðd2Þnþ1

�t ¼ 1

2
ðjrdnþ1

1 j
2Þ�t þ

1

2
ðjrdnþ1

2 j
2Þ�t ¼

1

2
ðjrdnþ1

h j
2Þ�t;

ð3:7Þ

where dh ¼ ðd1; d2ÞT. We can also have
ghðdn
h; d

nþ1
h Þ � dnþ1

�t ¼ 1

4
ðjdnþ1

h j
2 þ jdn

hj
2 � 2Þðdnþ1

h þ dn
hÞ � ðdnþ1

h � dn
hÞ=Dt

¼ 1

4Dt
ðjdnþ1

h j
2 þ jdn

hj
2 � 2Þðjdnþ1

h j
2 � jdn

hj
2Þ ¼ ðF ðdnþ1

h ÞÞ�t: ð3:8Þ
With above choice of v and e, using these finite difference identities and adding up (3.1) and (3.3) we can then
obtain a discrete energy law:
1

2
kunþ1

h k
2
L2 þ k

2
krdnþ1

h k
2
L2 þ k

Z
X

F ðdnþ1
h Þ

� �
�t

¼ � mkru
nþ1

2
h k

2
L2 þ k

c
kdnþ1

�t

�
þðunþ1

2
h � rÞdnþ1

2
h þ Dbðu

nþ1
2

h Þd
nþ1

2
h k

2
L2

�
:

ð3:9Þ

We can easily see that the discrete energy decays as well and the energy law (2.7) is accurately preserved by this
modified midpoint scheme. We will briefly discuss possible energy laws for other commonly used schemes in a
remark below and then see that it is not usually possible to achieve such an accurate energy law in a fully dis-
crete system.

The divergence free condition (3.2) need be treated carefully in incompressible flow computations. The
projection method is simple but may be difficult to impose an artificial boundary condition and to derive
a discrete energy law. On the other hand, from the viewpoint of differential algebraic equations, the incom-
pressible flow model is of index two because the pressure does not show up in the divergence Eq. (3.2). The
problem is thus not well-posed and index reduction is needed before applying a differential equation solver
(see [18]). The penalty method (cf. [26]) is a simple formulation for such purpose. It does not require any
artificial boundary condition and general C0 polynomial elements can be used without a need to check the
inf-sup condition beforehand although the condition may be automatically satisfied via the formulation [19].
The penalty formulation works pretty well for the small molecule case (cf. [20]). We thus use the penalty
formulation again for this model. More importantly, we are able to derive a discrete energy law based
on this formulation. The penalty formulation under our modified midpoint scheme is to replace (3.2) by
the following:
Z

X
ðr � unþ1

2
h þ dp

nþ1
2

h Þqdx ¼ 0: ð3:10Þ
Practically, the divergence free condition may be enforced by choosing a relatively small d. We will choose
d = 10�6 in our computations. When it is necessary to use a larger d in order to improve the stability and accu-
racy a sequential regularization formulation (see [18]) may be used to replace the penalty formulation. The
derivation of the energy law is not much different from the non-penalized formulation. Only the pressure term
in (3.1) (i.e. �p

nþ1
2

h r � u
nþ1

2
h ) is relevant to the divergence equation. Now replacing (3.2) by (3.10) the pressure

term becomes
�
Z

X
p

nþ1
2

h r � unþ1
h ¼ d

Z
X
ðpnþ1

2
h Þ

2
:
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So under the penalty formulation we can still obtain a discrete energy law:
1

2
kunþ1

h k
2
L2 þ k

2
krdnþ1

h k
2
L2 þ k

Z
X

F ðdnþ1
h Þ

� �
�t

¼ � mkrunþ1
h k

2
L2 þ dkpnþ1

2
h k

2
L2

�
þ k

c
kdnþ1

�t þ ðunþ1
2

h � rÞdnþ1
2

h þ Dbðu
nþ1

2
h Þd

nþ1
2

h k
2
L2

�
: ð3:11Þ
So when d is sufficiently small the continuous energy law is fully maintained under the fully discretized penalty
formulation.

Remark 3.1. In all the existing work the fully implicit backward Euler scheme (cf. [21]) or some explicit–
implicit scheme (cf. [20]) are often used. But the discrete energy law for these schemes are not usually studied.
We only consider the backward Euler scheme in this remark (i.e. approximating ut and dt by the backward
divided difference, and fu; p; dg in all other terms of (2.2)–(2.4) by funþ1

h ; pnþ1
h ; dnþ1

h g). The explicit–implicit
scheme can be discussed similarly. Let us first look at the unit length relaxation term cgðdÞ=�2, where gðdÞ is
approximated by ghðdn

h; d
nþ1
h Þ ¼ ðjdnþ1

h j
2 � 1Þdnþ1

h . In deriving the energy law for this scheme (i.e. choosing
e ¼ k

c dnþ1
�t ) it becomes
k
Z

X
F ðdnþ1

h Þ�t þ ERn
h;
where the extra error term ERn
h ¼ kDt

4�2 ð2ðjdnþ1
h j

2 � 1Þjdnþ1
�t j

2 þ ðjdnþ1
h j

2 � 1Þ2�t Þ. If jdn
hj

2 � 1 � 0 and
ðjdnþ1

h j
2 � 1Þ�t � 0 then this error would possibly be small. Later from numerical computations we will see

the length of the approximate director would not be close to one near the orientation singularities and thus
the error may be of OðDt=�2Þ which is large if Dt is not much smaller than �2. This might cause some loss
of accuracy in the singularity evolution. We may approximate gðdÞ by (3.4) then the extra error ERn

h is gone
(see our argument for the modified midpoint scheme). We can then derive a discrete energy law for the penal-
ized backward Euler discrete system by taking v ¼ unþ1

h and e ¼ k
c dnþ1

�t . We can have (cf. [13,18])
unþ1
�t � unþ1

h ¼ ðunþ1
h � unþ1

h Þ�t � unþ1
�t � un

h ¼ ðunþ1
h � unþ1

h Þ�t þ ðunþ1
h � un

hÞ � ðunþ1
h � un

hÞ=Dt � unþ1
�t � unþ1

h :
So
unþ1
�t � unþ1

h ¼ 1

2
ðjunþ1

h j
2Þ�t þ

Dt
2
junþ1

�t j
2
: ð3:12Þ
Similarly,
rdnþ1
h : rdnþ1

�t ¼ rdnþ1
1 � rðd1Þnþ1

�t þrdnþ1
2 � rðd2Þnþ1

�t

¼ 1

2
ðjrdnþ1

1 j
2Þ�t þ

Dt
2
jrðd1Þnþ1

�t j
2 þ 1

2
ðjrdnþ1

2 j
2Þ�t þ

Dt
2
jrðd2Þnþ1

�t j
2

¼ 1

2
ðjrdnþ1

h j
2Þ�t þ

Dt
2
jrdnþ1

�t j
2
; where dh ¼ ðd1; d2ÞT: ð3:13Þ
We also have
Z
X
ðunþ1

h � rÞunþ1
h � unþ1

h ¼ 1

2
d
Z

X
pnþ1

h junþ1
h j

2
; �

Z
X

pnþ1
h r � unþ1

h ¼ d
Z

X
ðpnþ1

h Þ
2
:

We can then obtain a discrete energy law:
1

2
kunþ1

h k
2
L2 þ k

2
krdnþ1

h k
2
L2 þ k

Z
X

F ðdnþ1
h Þ

� �
�t

¼ � mkrunþ1
h k

2
L2 þ 1

2
d
Z

X
pnþ1

h junþ1
h j

2þ
�

dkpnþ1
h k

2
L2 þ

k
c
kdnþ1

�t þ ðunþ1
h � rÞdnþ1

h þ Dbðunþ1
h Þdnþ1

h k
2
L2

þDt
2
kunþ1

�t k
2
L2 þ kDt

2
krdnþ1

�t k
2
L2

�
: ð3:14Þ
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Using the Sobolev inequality kuk2
L4 6 c2

SkukL2krukL2 we have
d
2

Z
X

pnþ1
h junþ1

h j
2
6

d
2
kpnþ1

h kL2kunþ1
h k

2
L4 6

d
2
kpnþ1

h k
2
L2 þ

dc2
S

8
kunþ1

h k
2
L2krunþ1

h kL2 :
If we choose d sufficiently small such that 1
8
dc2

Skunþ1
h k

2
L2 < m (where cS is the constant of the Sobolev inequal-

ity) then the second term of the right hand side of the discrete energy law (3.14) can be controlled by the
sum of the first and the third terms. Thus the energy always decays for the penalized backward Euler
scheme as well.

From (3.14) we may also say that the backward Euler scheme approximately preserves the energy law as
long as quantities

R
X pn

hjunþ1
h j

2, kpnþ1
h k

2
L2 , kunþ1

�t k
2
L2 and krdnþ1

�t k
2
L2 are of moderate size. However, the first three

quantities may be of moderate size but the last one could be very large. For example, we compute the Example
5.1 given in the last section with � = 1.0, 0.5, 0.1 and 0.05, and depict, say, kpnþ1

2

h kL2 and kdnþ1
�t kL2 versus time in

Fig. 1.
From the figure, it seems that maxnkp

nþ1
2

h kL2 is roughly of order 1/� and its magnitude is of moderate size.
But maxnkrdnþ1

�t kL2 is roughly of order 1/�2, especially, the magnitude of krdnþ1
�t k

2
L2 when � = 0.05 may be as

large as 3002 near t = 0.26 (the annihilation time when two singularities meet). So to achieve a good
approximate energy law, we have to choose Dt� �2, which is not desirable.
4. Implementation issues

In this section we discuss how to find the solution of the scheme (3.1), (3.10) and (3.3). Since the scheme is
nonlinearly implicit we need to do a linearization and then solve a linear system at each time step. The model is
non-symmetric, highly complex, and includes quite a number of parameters which may be large or small. It
may not be robust and may not be easy to provide a theoretical justification of correct convergence when an
iterative method is used to solve the resulting linear system. Hence, we solve the linear system using a direct
method to avoid the uncertain performance of iterative methods and to ensure the correctness of the solution.
On the other hand, looking at the scheme (3.1)–(3.3) with the Newton linearization the linear system depends
on time. So we will have to solve a different linear system at every time step. This indicates that a direct method
may be pretty costly. We thus look for an alternative linearization where the linear system may be symmetric
but, more importantly, does not depend on time. Then we only need to have an LU or Cholesky kind of
decomposition of the linear system at the beginning of time. After the initial time we do not need to solve
any linear system when its coefficient matrix is time-independent. That is, we can compute the solution of
the implicit scheme as if it is an explicit scheme.
Fig. 1. kdnþ1
�t kL2 and kpnþ1

2
h kL2 vs time for � = 1.0, 0.5, 0.1 and 0.05.
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To achieve a time independent (or matrix free) linear system we propose to use a fixed point iteration as the
linearization of all nonlinear terms. We thus have the following iterative scheme (for s ¼ 1; 2; . . .) at every time
level tn, i.e. find �us, �ps and �ds (as an approximation of unþ1, pnþ1 and dnþ1, respectively) to satisfy:
Z

X
ð�usÞ�t � vþ

un
h þ �us�1

2
� r

� �
un

h þ �us�1

2
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2
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n
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2
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2
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2
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h þ �ps

2
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c
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2
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2
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2

� �
dn
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� ðv � rÞ d
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2
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2
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� �
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� �
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dx ¼ 0;

ð4:1ÞZ
X
r � u

n
h þ �us

2
þ d

pn
h þ �ps

2

� �
qdx ¼ 0; ð4:2Þ
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ð�dsÞ�t � eþ

un
h þ �us�1

2
� r

� �
dn

h þ �ds�1

2
� eþ Db
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h þ �us�1

2

� �
dn

h þ �ds�1

2
� e

�

þ cr dn
h þ �ds

2
: reþ c

�2
ghðdn

h;
�ds�1Þ � e

	
dx ¼ 0; ð4:3Þ
where we can choose initial iteration as �u0 ¼ un
h and �d0 ¼ dn

h. We can easily see that the stiffness matrix at each
time step is symmetric, independent of time and of the number of the fixed point iterations. From the discus-
sion in [20] for the small molecule case the step size Dt has to satisfy cDt < �2 to ensure that the fixed point
method converges. This kind of restriction in Dt may be helpful from the accuracy point of view as well. How-
ever, for the model we are solving now, the condition is not enough for the convergence of the fixed point
iteration (4.1)–(4.3). Even if we assume that the solution is sufficiently regular, when we conduct a convergence
analysis of the method we will still have trouble, especially in dealing with the term k

c ð�dsÞ�t � DbðvÞ
dn

hþ�ds�1

2
which

does not appear in the small molecule case. Generally speaking, the convergence of the method may depend
also on the ratio k/c as well as the solution due to the high nonlinearity. The smaller the ratio k/c is, the better
the convergence of the fixed point method. Nevertheless, the method converges for all the numerical experi-
ments given in the last section. We will provide an alternative treatment in Remark 4.1 if the fixed point meth-
od does not converge.

We would like to emphasize here that we want to use the fixed point iteration whenever possible not only
because a symmetric stiffness matrix and a matrix free evolution process can be achieved but also because the
system (4.1) and (4.2) for u and p and the system (4.3) for d are automatically separated. We can solve (4.3)
first to obtain �ds, then solve (4.1) and (4.2) to get �us and �ps. This further reduces the size of the system and the
cost of computation.

Remark 4.1. If the fixed iterative method does not converge we may use the Newton’s method. In this case we
may not be able to pursue a matrix free evolution process. Due to high nonlinearity the Newton’s iterative
formulas may also be very complicated. An alternative is to use an explicit–implicit second order temporal
discretization. That is, we approximate unþ1

h and dnþ1
h in part of those nonlinear terms by

un
h þ un

�t Dt ¼ 2un
h � un�1

h and dn
h þ dn

�t Dt ¼ 2dn
h � dn�1

h , respectively. We thus have the following second order
temporal scheme.
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ð4:6Þ
where we take gh to be the same as in (3.3). As shown in Remark 3.1 other choice of gh may possibly cause
inaccuracy in maintaining the discrete energy law. Similarly to the previous section, taking v ¼ u

nþ1
2

h , q ¼ p
nþ1

2
h

and e ¼ k
c dnþ1

�t , we can easily derive a penalized discrete energy law:
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In this scheme all equations are coupled to formulate a almost linear system with nonlinearity appeared
only at gh (thus simpler than (3.1)–(3.3). We may further simplify the scheme (if not deteriorating the

stability) by replacing u
nþ1

2
h and d

nþ1
2

h in all trilinear terms by
3un

h�un�1
h

2
and

3dn
h�dn�1

h
2

, respectively. Then we still

have a second order temporal scheme and an OððDtÞ2Þ approximate energy law to (4.7) and at the same
time make system (4.4),(4.5) and system (4.6) being separated, i.e. we can solve for d from (4.6) first and
then solve for fu; pg from (4.4),(4.5). The size of the system is thus significantly reduced. The nonlinear term
gh in system (4.6) may be dealt with by either the Newton’s method or the fixed point method. If we use the
fixed point method as before then we can have a matrix free iteration (i.e. the stiffness matrix is independent
of the iteration) for the nonlinear system. Following the technique given in [20] we can also derive the con-
vergence estimate:
kdnþ1
h � �dskL2 6

cMdDt
�2
kdnþ1

h � �ds�1kL2 ;
where Md ¼ maxnjjdnj2 � 1j. That is, for this simplified second order explicit–implicit scheme the fixed point
nonlinear iteration converges if cMdDt=�2 < 1.
5. Numerical examples

In this section we would like to do a number of numerical experiments to demonstrate the proposed energy
law preserving C0 finite element method. We will also use the method developed in the paper to simulate kine-
matic effects through a few liquid crystal flow examples. The computations are carried out with the help of the
freefem++ platform [4] and MATLAB.

We will consider the following singularity transportation example originally given in [21]. We will set the
Reynolds number to be one. Some results for other Reynolds numbers will be given later. We apply the fixed
point iterative method (cf. (4.1)–(4.3)) with a tolerance 10�5.

Example 5.1. We consider the hydrodynamic liquid crystal model (1.1)–(1.3), where the initial director field

dðxÞ ¼ ~dðxÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~dðxÞj2 þ �2

q
, and
~dðxÞ ¼ ðx2
1 þ x2

2 � a2; 2ax2Þ:

We simply choose a = 0.5. This director field has singularities at x ¼ ð	a; 0Þ with unit degrees of opposite
signs. Let the initial flow field be zero. Two singularities would move towards the origin, meet and then dis-
appear (annihilation). At the annihilation the energy will have a significant drop (see Fig. 6). So we roughly
determine the annihilation time by observing that the energy starts to have a significant drop (for this example,
it occurs when the energy drops below 10). We take �2 = 0.052, Dt ¼ 0:001 and use a 16 · 16 grid in the
computation.
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From the computation we observe that the annihilation time is roughly t = 0.262 for this example using this
energy law preserving method. The result is consistent when we use a smaller time step Dt ¼ 0:0001 or use a finer
mesh 64 · 64. This provides another evidence that the method is pretty robust in simulating the singularity
transportation. We depict the director and flow fields at the annihilation time in Fig. 2. From the penalized

divergence free Eq. (3.10) we have kr � unþ1
2

h kL2 6 dkpnþ1
2

h kL2 . Fig. 1 indicates that maxnkp
nþ1

2
h kL2 is about 14, so

kr � unþ1
2

h kL2 6 14d � 1:4� 10�5. So the divergence free condition is maintained well with the method. The

following table gives roughly computed annihilation times for a number of values of b.
b

Fig. 2. Initial direct

Fig. 3. T
0.0
or field and director

he steady state direc
�0.2
and flow fields at the a

tor fields with b = 0.0,
�0.5
nnihilation time t = 0.2

�0.5 and �1.0, respect
�0.8
6 with b = �0.2.

ively.
�1.0

Annihilation time
 0.267
 0.262
 0.251
 0.238
 0.231
The energy has no significant change after reaching 1.33249. We may consider the solution reaches the
steady state at this energy. For different values of b the time when the solution reaches the steady state is
slightly different (for example, t = 0.73 for b = �1.0, t = 0.7 for b = �0.5 and t = 0.68 for b = 0.0, respec-
tively). But it seems that the steady state solution does not depend on b. Fig. 3 shows the steady state solution
with b = 0, �0.5 and �1.0. We do not observe any significant difference between these figures with these
different b values.

5.1. Computing the small molecule case with various Reynolds numbers

In [21,23,20] a simpler case where the liquid crystal molecule is assumed to be small is considered. Thus the
motion of liquid crystal molecule is represented by the motion at its center of mass. The model is Eqs. (1.1)–
(1.3) but removing DbðuÞd in (1.3) and removing its corresponding stress term (i.e. no last term in the left hand
side of (1.1)). In [20] a weak form without replacing the stress term by (2.1) and (1.3) was adopted. Hence, the
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energy law cannot be rigorously derived if we do not assume the H2 regularity of the solution of (1.3). It
worked for the Example 5.1 and the annihilation time is given there for a few different Reynolds numbers.

In this section we would like to re-compute the small molecule model with those Reynolds numbers for the
purpose of comparison. Since the annihilation time can only be given by observation it may not necessarily be
accurate. So we will not compare the annihilation time but the time when the energy drops to certain level, for
example, E = 12.559 (at t = 0.26 with l = 1.0 using the method proposed in [20]). We do six fixed point iter-
ations in each time step and the iterative error is about 3 · 10�6. The table below lists the time computed using
the method (4.1)–(4.3) proposed in this paper for various Reynolds numbers or viscosity l.
l

Fig. 4. Directo
1.0
r and flow fields wit
0.1
h Re = 10 near the a
0.01
nnihilation time.
0.001
 0.0001

The time when E � 12:559
 0.271
 0.246
 0.239
 0.238
 0.238
For l = 1.0 the time was t = 0.26 in [20] which is slightly different from t = 0.271 we obtained here. But the
method used in [20] is based on a weak form without a rigorous continuous energy law. It does not have an
accurate discrete energy law for the time-discretized system either. So we believe that the result we obtain here
would be more reliable since the method is of second order in time and the energy law is accurately preserved if
the fixed iterative method converges. Fig. 4 below depicts the director and flow fields at t = 0.246 for the case
of Re = 10.

We also observed in [20] that near the annihilation time and in cases of the higher Reynolds number (i.e.
Re = 100 and 1000) the velocity field near the singularity region looks messy or unclear and for Re = 1000
even a 64 · 64 grid was not enough and a much more refined grid around the singularity region was required.
We believe that it is due to no rigorous continuous energy law in the direct weak form given in [20]. We thus
re-compute the example for these two Reynolds numbers plus Re = 10000 using the weak form (2.2)–(2.4) we
currently developed. Under this weak form the energy law has been rigorously derived and an accurate dis-
crete energy law has been derived too. We observe that the velocity field can be well calculated even with a
16 · 16 grid. To see details of the velocity structure we will depict the result with a 64 · 64 grid. The director
and velocity fields near its annihilation time (or when E = 12.559) are given in Fig. 5 for higher Reynolds num-
bers Re = 100, 1000 and 10000. We observe that under the energy-law preserving formulation presented in this
paper the flow field Re = 100 and Re = 1000 is significantly more accurate near the center (where the singu-
larity locates at the annihilation time) than those (Figs. 5 and 6) in [20]. In the case of Re = 1000 the method in
[20] requires a finer mesh to achieve a reasonable results. This indicates that the energy law preserving formu-
lation has a better stability as well.

Next figures we will see how the energy decays according to the viscosity or the Reynolds number
ðl ¼ 1; 0:1; 0:01 and 0:001Þ. In the computation we use a 16 · 16 grid and Dt ¼ 0:001. We take �2 ¼ 0:052.
We observe that a significant change of energy is accompanied with the annihilation.



Fig. 6. Energy vs time.

Fig. 5. Flow fields with Re = 100, 1000 and 10000 near the annihilation time.
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5.2. Rheological behavior under different kinematic transportation

In this section we will consider the large molecule liquid crystal flow in a square domain or a square domain
with a circular hole. Initial director field is the same as Example 5.1. Initial velocity field is either
u1 ¼ ð�xy;xxÞ or u2 ¼ ð�xx;xyÞ (see Fig. 7). We would like to see how singularity transports in these veloc-
ity fields. Difference to the small molecule case (calculated in [20]) would be observed.

We first consider a square domain with a rotational velocity field u1 with x = 20. Fig. 8 depicted director
fields at four different times. Clearly, the annihilation time is around t = 0.2.
Fig. 7. Two types of rotational initial velocities u1 and u2 with x = 20.



Fig. 9. Director fields at t = 0.05 and 0.1 in a square domain with a circular hole under the rotational velocity field u1 (x = 20).

Fig. 8. Director fields at t = 0.05, 0.1, 0.15 and 0.2 in a square domain with the rotational velocity field u1 (x = 20).
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Fig. 10. Director fields at t = 0.02 and 0.04 in a square domain under the initial velocity field u2 (x = 20).

Fig. 11. Director fields at t = 0.2 and 0.4 in a square domain under the initial velocity field u2 (x = 2).
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Next we calculate the same problem in a square domain with a circular hole. We have done the computa-
tion for small molecule model in [20] where two initial singularities approach the boundary of the circular hole
and then rotate around the hole. These two singularities do not seem to annihilate in a pretty long time. But
for the large molecule model we considered in this paper these two singularities annihilate roughly after
t = 0.2. We also note difference of the molecule orientation pattern for small or large molecules are a bit dif-
ferent near the boundary. Fig. 9 shows the computational results.

If we consider another type of rotational velocity field u2. The flow field has direction opposite the moving
direction of the singularity. If the flow velocity is fast (say, x = 20) two singularities will move along the flow
direction and stop at the left and right sides of the square (see Fig. 10). If the flow velocity equals the velocity
of the moving singularity (roughly, x = 2) we do not see that singularities move (see Fig. 11).

If the flow velocity is slower than x = 2 singularities will slowly move towards the center and annihilate at a
much later time than that in the zero initial flow case.
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